Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.

Identifieur interne : 004295 ( Main/Exploration ); précédent : 004294; suivant : 004296

Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.

Auteurs : Patrik Johansson [Suède] ; Harry Brumer ; Martin J. Baumann ; Asa M. Kallas ; Hongbin Henriksson ; Stuart E. Denman ; Tuula T. Teeri ; T Alwyn Jones

Source :

RBID : pubmed:15020748

Descripteurs français

English descriptors

Abstract

Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure-function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-A resolution. Even though the overall structure of PttXET16A is a curved beta-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional beta-strand and a short alpha-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues.

DOI: 10.1105/tpc.020065
PubMed: 15020748
PubMed Central: PMC412862


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.</title>
<author>
<name sortKey="Johansson, Patrik" sort="Johansson, Patrik" uniqKey="Johansson P" first="Patrik" last="Johansson">Patrik Johansson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell and Molecular Biology, Uppsala University, BMC, S-75124 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Cell and Molecular Biology, Uppsala University, BMC, S-75124 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
<author>
<name sortKey="Baumann, Martin J" sort="Baumann, Martin J" uniqKey="Baumann M" first="Martin J" last="Baumann">Martin J. Baumann</name>
</author>
<author>
<name sortKey="Kallas, Asa M" sort="Kallas, Asa M" uniqKey="Kallas A" first="Asa M" last="Kallas">Asa M. Kallas</name>
</author>
<author>
<name sortKey="Henriksson, Hongbin" sort="Henriksson, Hongbin" uniqKey="Henriksson H" first="Hongbin" last="Henriksson">Hongbin Henriksson</name>
</author>
<author>
<name sortKey="Denman, Stuart E" sort="Denman, Stuart E" uniqKey="Denman S" first="Stuart E" last="Denman">Stuart E. Denman</name>
</author>
<author>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</author>
<author>
<name sortKey="Jones, T Alwyn" sort="Jones, T Alwyn" uniqKey="Jones T" first="T Alwyn" last="Jones">T Alwyn Jones</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15020748</idno>
<idno type="pmid">15020748</idno>
<idno type="doi">10.1105/tpc.020065</idno>
<idno type="pmc">PMC412862</idno>
<idno type="wicri:Area/Main/Corpus">004320</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004320</idno>
<idno type="wicri:Area/Main/Curation">004320</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004320</idno>
<idno type="wicri:Area/Main/Exploration">004320</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.</title>
<author>
<name sortKey="Johansson, Patrik" sort="Johansson, Patrik" uniqKey="Johansson P" first="Patrik" last="Johansson">Patrik Johansson</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Cell and Molecular Biology, Uppsala University, BMC, S-75124 Uppsala, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Cell and Molecular Biology, Uppsala University, BMC, S-75124 Uppsala</wicri:regionArea>
<orgName type="university">Université d'Uppsala</orgName>
<placeName>
<settlement type="city">Uppsala</settlement>
<region nuts="1">Svealand</region>
<region nuts="1">East Middle Sweden</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
<author>
<name sortKey="Baumann, Martin J" sort="Baumann, Martin J" uniqKey="Baumann M" first="Martin J" last="Baumann">Martin J. Baumann</name>
</author>
<author>
<name sortKey="Kallas, Asa M" sort="Kallas, Asa M" uniqKey="Kallas A" first="Asa M" last="Kallas">Asa M. Kallas</name>
</author>
<author>
<name sortKey="Henriksson, Hongbin" sort="Henriksson, Hongbin" uniqKey="Henriksson H" first="Hongbin" last="Henriksson">Hongbin Henriksson</name>
</author>
<author>
<name sortKey="Denman, Stuart E" sort="Denman, Stuart E" uniqKey="Denman S" first="Stuart E" last="Denman">Stuart E. Denman</name>
</author>
<author>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</author>
<author>
<name sortKey="Jones, T Alwyn" sort="Jones, T Alwyn" uniqKey="Jones T" first="T Alwyn" last="Jones">T Alwyn Jones</name>
</author>
</analytic>
<series>
<title level="j">The Plant cell</title>
<idno type="ISSN">1040-4651</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Binding Sites (MeSH)</term>
<term>Carbohydrate Sequence (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Glucans (chemistry)</term>
<term>Glycosylation (MeSH)</term>
<term>Glycosyltransferases (chemistry)</term>
<term>Glycosyltransferases (genetics)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Oligosaccharides (chemistry)</term>
<term>Pichia (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein Conformation (MeSH)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
<term>Xylans (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Conformation des protéines (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glucanes (composition chimique)</term>
<term>Glycosylation (MeSH)</term>
<term>Glycosyltransferase (composition chimique)</term>
<term>Glycosyltransferase (génétique)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Oligosaccharides (composition chimique)</term>
<term>Pichia (génétique)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Sites de fixation (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Séquence glucidique (MeSH)</term>
<term>Xylanes (composition chimique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glucans</term>
<term>Glycosyltransferases</term>
<term>Oligosaccharides</term>
<term>Recombinant Proteins</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycosyltransferases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycosyltransferases</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucanes</term>
<term>Glycosyltransferase</term>
<term>Oligosaccharides</term>
<term>Protéines recombinantes</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pichia</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glycosyltransferase</term>
<term>Pichia</term>
<term>Populus</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glycosyltransferase</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Binding Sites</term>
<term>Carbohydrate Sequence</term>
<term>Crystallography, X-Ray</term>
<term>Glycosylation</term>
<term>Models, Molecular</term>
<term>Molecular Sequence Data</term>
<term>Protein Conformation</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conformation des protéines</term>
<term>Cristallographie aux rayons X</term>
<term>Données de séquences moléculaires</term>
<term>Glycosylation</term>
<term>Modèles moléculaires</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Sites de fixation</term>
<term>Séquence d'acides aminés</term>
<term>Séquence glucidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure-function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-A resolution. Even though the overall structure of PttXET16A is a curved beta-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional beta-strand and a short alpha-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15020748</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1040-4651</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>16</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2004</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>The Plant cell</Title>
<ISOAbbreviation>Plant Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.</ArticleTitle>
<Pagination>
<MedlinePgn>874-86</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Xyloglucan endotransglycosylases (XETs) cleave and religate xyloglucan polymers in plant cell walls via a transglycosylation mechanism. Thus, XET is a key enzyme in all plant processes that require cell wall remodeling. To provide a basis for detailed structure-function studies, the crystal structure of Populus tremula x tremuloides XET16A (PttXET16A), heterologously expressed in Pichia pastoris, has been determined at 1.8-A resolution. Even though the overall structure of PttXET16A is a curved beta-sandwich similar to other enzymes in the glycoside hydrolase family GH16, parts of its substrate binding cleft are more reminiscent of the distantly related family GH7. In addition, XET has a C-terminal extension that packs against the conserved core, providing an additional beta-strand and a short alpha-helix. The structure of XET in complex with a xyloglucan nonasaccharide, XLLG, reveals a very favorable acceptor binding site, which is a necessary but not sufficient prerequisite for transglycosylation. Biochemical data imply that the enzyme requires sugar residues in both acceptor and donor sites to properly orient the glycosidic bond relative to the catalytic residues.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Johansson</LastName>
<ForeName>Patrik</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Cell and Molecular Biology, Uppsala University, BMC, S-75124 Uppsala, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brumer</LastName>
<ForeName>Harry</ForeName>
<Initials>H</Initials>
<Suffix>3rd</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Baumann</LastName>
<ForeName>Martin J</ForeName>
<Initials>MJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kallas</LastName>
<ForeName>Asa M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Henriksson</LastName>
<ForeName>Hongbin</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Denman</LastName>
<ForeName>Stuart E</ForeName>
<Initials>SE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Teeri</LastName>
<ForeName>Tuula T</ForeName>
<Initials>TT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jones</LastName>
<ForeName>T Alwyn</ForeName>
<Initials>TA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF515607</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>03</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell</MedlineTA>
<NlmUniqueID>9208688</NlmUniqueID>
<ISSNLinking>1040-4651</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009844">Oligosaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37294-28-3</RegistryNumber>
<NameOfSubstance UI="C029353">xyloglucan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.207</RegistryNumber>
<NameOfSubstance UI="C473049">xyloglucan - xyloglucosyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002240" MajorTopicYN="N">Carbohydrate Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009844" MajorTopicYN="N">Oligosaccharides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010843" MajorTopicYN="N">Pichia</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011487" MajorTopicYN="N">Protein Conformation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>6</Month>
<Day>26</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15020748</ArticleId>
<ArticleId IdType="doi">10.1105/tpc.020065</ArticleId>
<ArticleId IdType="pii">tpc.020065</ArticleId>
<ArticleId IdType="pmc">PMC412862</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 1999 May;18(4):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10406121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2000 Jan;56(Pt 1):42-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10666625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Jul;12(7):1229-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10899986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 May 1;355(Pt 3):671-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11311129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Apr;26(1):23-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11359607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2001 Jun 4;332(3):285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11376608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Physiol Biophys. 2000 Dec;19(4):427-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2001 Jun;9(6):513-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11435116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Aug;57(Pt 8):1201-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11468417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Aug 23;412(6849):835-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11518970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):1125-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):989-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Dec;14(12):3073-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12468728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1421-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Mar;59(Pt 3):535-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12595718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2003 Jun;31(Pt 3):523-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Oct 1;375(Pt 1):61-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12826015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1992 Mar 15;282 ( Pt 3):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1554366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Oct 15;279 ( Pt 2):529-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1953647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr A. 1991 Mar 1;47 ( Pt 2):110-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2025413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:307-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27754618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1997;276:472-494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27799110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1968 Apr 28;33(2):491-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5700707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Oct;7(10):1555-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7580251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Feb 17;270(7):3081-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7852389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Jul 22;265(5171):524-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8036495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5287-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8099449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 May 15;222(1):203-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8200344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1995 Jul 20;229(1):80-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8533899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Graph. 1996 Feb;14(1):51-5, 29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8744573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Nov 29;264(2):337-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8951380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Dec 3;35(48):15280-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8952478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1996 Dec 15;4(12):1395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8994966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Jan 15;321 ( Pt 2):557-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9020895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 May;114(1):9-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9159939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Sep;115(1):181-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9306698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1997 Oct;7(5):637-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9345621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1998 Jan 16;275(2):309-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9466911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1998 Mar 15;330 ( Pt 3):1475-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9494122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1998 Mar 27;425(2):352-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9559678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Nov 1;327 ( Pt 3):699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9581545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Aug;15(4):553-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9753780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Sep 1;54(Pt 5):905-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9757107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1998 Jul 1;54(Pt 4):487-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9761844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gen Physiol Biophys. 1998 Jun;17(2):133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9785101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):13330-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9789088</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>East Middle Sweden</li>
<li>Svealand</li>
</region>
<settlement>
<li>Uppsala</li>
</settlement>
<orgName>
<li>Université d'Uppsala</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Baumann, Martin J" sort="Baumann, Martin J" uniqKey="Baumann M" first="Martin J" last="Baumann">Martin J. Baumann</name>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
<name sortKey="Denman, Stuart E" sort="Denman, Stuart E" uniqKey="Denman S" first="Stuart E" last="Denman">Stuart E. Denman</name>
<name sortKey="Henriksson, Hongbin" sort="Henriksson, Hongbin" uniqKey="Henriksson H" first="Hongbin" last="Henriksson">Hongbin Henriksson</name>
<name sortKey="Jones, T Alwyn" sort="Jones, T Alwyn" uniqKey="Jones T" first="T Alwyn" last="Jones">T Alwyn Jones</name>
<name sortKey="Kallas, Asa M" sort="Kallas, Asa M" uniqKey="Kallas A" first="Asa M" last="Kallas">Asa M. Kallas</name>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Johansson, Patrik" sort="Johansson, Patrik" uniqKey="Johansson P" first="Patrik" last="Johansson">Patrik Johansson</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004295 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004295 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15020748
   |texte=   Crystal structures of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15020748" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020